
An Actionable Performance
Profiler for Optimizing the Order

of Evaluations

Marija Selakovic Thomas Glaser Michael Pradel

ISSTA'17, 11 July
1

Inefficient Order Of Evaluation

expensiveAndUnlikely() && cheapAndLikely()

2

Example

3.14

Number(3.14)

NaN See pull request #2496 of Underscore.js

(true, false)

(true, true)

(true, false)

Checking whether the input is NaN:

_.isNaN = function(obj) {

 return _.isNumber(obj) && isNaN(obj);

 };

Inputs: Evaluations:

3

Optimizing the Order of
Evaluations

Goal: To find the most cost effective order of
checks in a conditional

Challenges:

Analysis of all checks in a conditional
Assessment of the computational cost
Safe to apply and beneficial optimizations

4

This Talk: DecisionProf

Profiler to find reordering opportunities

Traditional profiler

Where time is spent,
not where time is
wasted

DecisionProf

Actionable - suggests
concrete optimizations
Guaranteed performance
improvement

5

DecisionProf: Overview

Program
transformation

Performance
evaluation

Profiler

Program + input

Optimization
candidates

P ... P1 n

Optimization
opportunities

Static preprocessing

Dynamic analysis

6

Commutative Checks

Check: Condition in a logical expression or
switch statement

Non-commutative checks: changes program's
semantics
 e.g. a && a.x

Goal: Optimizing commutative checks

7

Dynamic Analysis

a && b

Cost Value
c v

c v

....

c v

a1 a1

a2 a2

an an

Cost Value
c v

c v

....

c v

b1 b1

b2 b2

bn bn

Cost = number of executed branching points

Execution 1

Execution 2

Execution n

8

Dynamic Analysis: Example

_.isNumber(input) && isNaN(input)

Cost Value
3 true

3 true

3 true

Cost Value
1 false

1 false

1 true

Overall cost = 12

Execution 1

Execution 2

Execution 3

9

Dynamic Analysis: Example

 isNaN(input) && _.isNumber(input)

Cost Value
1 false

1 false

1 true

Cost Value
3 true

3 true

3 true

Overall cost = 6

Execution 1

Execution 2

Execution 3

Estimate execution times of different orders

10

Performance Evaluation

Program transformation for each
optimization candidate
Methodology by Georges et al.[1] ​

[1] A. Georges, D. Buytaert, and L. Eeckhout. Statistically rigorous Java performance evaluation. (OOPSLA 07)

Original program + input Optimized program + input

t-test

VM instances
Warm up
Measure

11

Analysis Of All Checks:
Challenges

Static preprocessing - hoists all checks outside the
conditional
var x = 0;

function a () {
 x++;
 var y=1;

 }

startCheck: a();
startCheck: b();

if (a () && b()) ...

write to x affects
program state

12

Safe Check Evaluation

Idea: Collect and undo all writes to variables and object
properties that may affect code after check evaluation

var x = 0;

function a () {
 x++;
 var y=1;

 }

startCheck: a();
startCheck: b();

//reset all side effects
if (a () && b()) ...

write to x affects
program state

program state is changed
outside normal execution

dynamically execute x = 0;

13

Pruning Non-Commutative
Checks

Dynamic: accesses the same
variable/object property

Static: known patterns

a() && b()

var x;

a && a.x

y = x || "z"

14

Evaluation

Subject Programs and Inputs

Performance Measurements

9 popular JavaScript libraries
and their test suites
34 benchmarks from
JetStream suite

NVM = 5, NwarmUp = 5, Nmeasure = 10

15

Results

Reordering Opportunities

23 optimizations across 9 libraries
29 optimizations across benchmarks
Performance improvements: 2.5% - 59% (function
level), 2.5% - 6.5% (application level)
Reported 7 optimizations (3 already accepted)

16

Estimated vs. Actual Cost

Correlation = 0.92 for unit tests
Correlation = 0.98 for benchmarks 17

Examples

Cheerio library:

Gbemu benchmark:

//code before
isTag (elem) && elems.indexOf(elem) === -1

//code after
elems.indexOf(elem) === -1 && isTag (elem)

//code before
numberType != "float32" && GameBoyWindow.opera
 && this.checkForOperaMathBug ()

//code after
GameBoyWindow.opera && numberType != "float32"
 && this.checkForOperaMathBug ()

Performance
improvements

unit tests:
 26%, 34%

application:
 5.8%

18

Limitations

Input sensitivity

Side effects of native calls

Correctness guarantees

19

Conclusions

Profiler to detect reordering opportunities

Easy to exploit class of optimizations
Suggests concrete refactorings
Performance improvement guarantees

expensiveAndUnlikely() && cheapAndLikely()

20

