
Performance Issues and OptimizationsPerformance Issues and Optimizations
in JavaScript: An Empirical Studyin JavaScript: An Empirical Study

Marija SelakovicMarija Selakovic
Michael PradelMichael Pradel

May 18, 2016

1

2

3

Why Do DevelopersWhy Do Developers
Optimize JavaScript? Optimize JavaScript?

Still possible to write slow code

Compiler optimizations are limited
Deopts and bailouts

4

This Talk: Empirical studyThis Talk: Empirical study
of performance issues andof performance issues and
optimizations in JavaScriptoptimizations in JavaScript

5

ContributionsContributions

Better understanding of
performance issues in JavaScript

Set of reproducible
performance problems [1]

[1] https://github.com/marijaselakovic/JavaScriptIssuesStudy

6

Who Benefits From This Study?Who Benefits From This Study?

Application
developers

Developers of
program analyses

Developers of
JS engines

7

Motivating ExampleMotivating Example

for (var prop in arg) {
 if (arg.hasOwnProperty(prop)) {

 }
}

Iterates over all
properties of arg

var updates = Object.keys(arg);
for (var i=0, l=updates.length; i<l; i++) {
 var prop = updates[i];

}

Provides enumerable
properties of arg

Ember.js pull request 11338

8

MethodologyMethodology

Subject programs
16 popular JavaScript projects
High number of pull requests

Selection of performance issues
~100 performance issues
Reproducible
Confirmed and accepted optimizations

9

What are the main root causes ofWhat are the main root causes of
performance issues in JavaScript?performance issues in JavaScript?

10

Most Prevalent Root CausesMost Prevalent Root Causes

52% of all issues are caused by 52% of all issues are caused by inefficient API usageinefficient API usage

11

Inefficient API UsageInefficient API Usage

Multiple functionally equivalent
ways to do the same

 str.split("'").join("\\'")

str.replace(/'/g, "\\'")

Relatively small number of root causesRelatively small number of root causes

12

How complex the optimizations are?How complex the optimizations are?

13

Performance vs. MaintainabilityPerformance vs. Maintainability

14

Complexity of OptimizationsComplexity of Optimizations

Median: 10 lines
37.5% do not modify
number of statements
47.2% do not modify
cyclomatic complexity
14.43% decrease
cyclomatic complexity

Relatively simple changes canRelatively simple changes can
speedup JavaScript codespeedup JavaScript code

Slow code Fast code

15

What is the performanceWhat is the performance
impact of optimizations?impact of optimizations?

16

Performance ImpactPerformance Impact

Developers apply optimizations thatDevelopers apply optimizations that
degrade performancedegrade performance

17

Are there recurringAre there recurring
optimization patterns?optimization patterns?

18

Recurring OptimizationsRecurring Optimizations

29 studied instances are recurring
AST-based static analysis
139 new instances
Reported 10 optimizations, 5 accepted

For the full list of reported optimizations, see
https://github.com/marijaselakovic/JavaScriptIssuesStudy

Many optimizations are instances ofMany optimizations are instances of
recurring patternsrecurring patterns

19

Can recurring optimizations beCan recurring optimizations be
applied automatically?applied automatically?

20

Automatically Applying RecurringAutomatically Applying Recurring
PatternsPatterns

"Apparently, V8’s JIT engineers require that we,"Apparently, V8’s JIT engineers require that we,
as JavaScript developers perform this veryas JavaScript developers perform this very

simple transformation, since they do not seemsimple transformation, since they do not seem
capable of performing it themselves" capable of performing it themselves"

(Developer of Ember.js)(Developer of Ember.js)

21

Preconditions for AutomaticPreconditions for Automatic
Transformations Transformations

Challenging to statically analyzeChallenging to statically analyze
these preconditions in JavaScriptthese preconditions in JavaScript

for (var prop in arg) {
 if (arg.hasOwnProperty(prop)) {

 }
}

Type check:
arg must be object

Native hasOwnProperty function
must not be overridden

22

ConclusionsConclusions

Systematic study of JavaScript
performance issues

Small number of root causes
Inefficient API usage
Relatively simple changes
Many instances of recurring patterns

Thank you! Questions?

23

Instances of Recurring PatternsInstances of Recurring Patterns

Use JQuery empty function instead of html(' ')

body.html('') body.empty()

Instead of checking object type with toString use
instanceof operator

Object.prototype.toString.
 call(err) === '[object Error]' err instanceof Error

Prefer for loop over functional processing of array

styles.reduce(
 function (str, name) {
 return ...;
 }, str);

for (var i=0; i< styles.length; i++) {
 var name=styles[i];
 str = ...;
 }
return str;

24

